If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-70=0
a = 7; b = 0; c = -70;
Δ = b2-4ac
Δ = 02-4·7·(-70)
Δ = 1960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1960}=\sqrt{196*10}=\sqrt{196}*\sqrt{10}=14\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{10}}{2*7}=\frac{0-14\sqrt{10}}{14} =-\frac{14\sqrt{10}}{14} =-\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{10}}{2*7}=\frac{0+14\sqrt{10}}{14} =\frac{14\sqrt{10}}{14} =\sqrt{10} $
| 55+x=130 | | 10))z-5+3z=8-z | | p/2+-9=-12 | | 4s-100+s=180 | | -3+2x=-7(7+3x) | | 4b+5=6(b+9) | | 10z+2=2z+26 | | 16n-10n=-12 | | 2x-2x-12=5 | | 18.14+3y+1=180 | | 3(5-x)+8x=7(x+2)-5x+7 | | 2(p+1)+8(p-1)=5p | | 4b=2b+16 | | -2+-2k=-6 | | 42=-6e | | 100/5x4=x | | |6–x|=10 | | 16h-14h+h-2=10 | | 3(1-3x)+6(x+1)=-1-3x | | u/3-6=-5 | | 3k+4+4=17 | | 2p-66+p=180 | | x-7÷-2=11 | | x=9/5•60+32 | | −2m +8+ m +1=0 | | 14x-23=19x-51 | | 12=c/4 | | z-16=-3 | | 65-x^2=8x | | 12x-78=2x | | 3/2x+1/x=4/5 | | 0=5b+5b |